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Total pathways of pyruvate
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w  Energy calculation of glycolysis
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Energy calculation of glycolysis
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Energy calculation of glycolysis
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Energy calculation of glycolysis

—_

GLUCOSE

T —
2 ADP =~

|

2 TRIOSE PHOSPHATES

Direct ATP
— (-2) + (+4) = 2 ATP

Indirect ATP
NADH+H?*

4ADP 2NAD'
4 ATP 2 NADH ‘ -

2 PYRUWATE ¢

rﬂ..zunon 1

2 NAD'
2 £ THANOL

e

Copyriant from Blochemistry, mahidol, 1999



Energy calculation of glycolysis
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Basic knowledge of enzyme class
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1. Hexokinase
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Hexokinase 1

'
Copyright from by http://en,wikipedia,org/wikl/Hexokinase#variation
OpYrg Y P 9

-4 hexokinase 1sozymes ( )
In hexokinases I, 11, 111, and IV or hexokinases A, B, C,
and D.

- In subcellular locations and kinetics
- different substrates and conditions, and physiological
function.


http://en.wikipedia.org/wiki/Mammal
http://en.wikipedia.org/wiki/Enzyme_Commission_number
http://enzyme.expasy.org/EC/2.7.1.1

2. Phosphoglucose isomerase
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Glucose-6-phosphate isomerase E.C. 5.3.1.9
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Multifunctional proteins

- In Cytosplasm >>> glucolysis + gluconeogenesis
- In Outside of cell >>>> neurotropic factor
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3. Phosphofructokinase

-2 6
0,POCH,

1
0. CH,0H
5KKH HO A2 + ATP
HO H
Fructose-6-phosphate
' (F6P)
PhOSPhOfructokinase (PFK) - an¥azNa NPT UN
M F6P
U
6 .
“*03POCH,  SH.OPOR Phosphofructokinase
© R (Hilou
5 + Ny )
H N O Ll A nu Hexokinase
4 5 OH
HO H

Fructose-1,6-bisphosphate /
(FBP)



4. Aldolase
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5. Triose phosphate Isomerase
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Triose phosphate isomerase

-Dimer (EC 5.3.1.1)
-250 residues In o/f protein folds (TIM barrels )

- 8 alpha-helices (outside)
- 8 beta-strand (inside)
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6. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

Copyright from by http://en.wikipedia.org/wikl/Glyceraldehyde-z-phosphate_dehydrogenase

-EC 1.2.1.12
-to break down glucose for energy

- non-metabolic processes (transcription activation, initiation
of apoptosis and ER to Golgi vesicle shuttling.
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3. Phosphoglycerate mutase
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9. Enolase
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10. Pyruvate kinase
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Metabolism of Fructose

HOCH, CH,OH
(o]
H HO
H OH
chtos«e
Muscle Liwver
ATP {?H;»UPO?;
) HOCH. CHoOPO3— HO—{IJ —H
N —eee T
“2OPOCH, CHOH. H HO - H—C—O0OH
O H OH i
H HO HO H CH;OH
H OFL Fructose-1- Fructose-1l-phosphate
HO H prhosphate (open chain)
phosphate fructose-1-phosphate =
aldolase
NADH NAD™Y CHOR
; H—G=0 \_,j H—C—OH
ATP H—C—OH (I; OH
ADP i alcohol Ho
- 3 CHyOH dehydrogenase Glycerol
B ? = =X Nl Gl aldehyd
. aldehyde yoer ehyde
Glycolysis H— (:Ij —OH kin.:lsz ATP
CH.OPO3— 3+ glycerol | g
' ’ Glyceraldehyde-3- T kinase
osphate triose ADP
== phosphate CHOH glycerol phosphate
* me e 1 ;_ dehydrogenase

(I:: =0 ﬂ\ <I:H20H

CHOPO§~ NADH NaD+ H—C—OH

Dihydroxy- CHL,OPO3 ™~
acetone
phosphate Glycerol-3-phosphate

VO HUNG
winiaeadl fructose gunu'ly —

Aldolase 5i'lsiimeane
v

Lactate production <—H ATP anas U‘_ naurauny P




Metabolism of Galactose
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Metabolism of Mannose
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Energy calculation of glycolysis
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Direct ATP
— (-2) + (+4) = 2 ATP

Indirect ATP
NADH+H* 2 x3=6ATP

|

2 ACETYL CoA ‘

Copyright from Blochemistry, mahidl, 1999

Indirect ATP

M) NADH+H* 2 x3= 6ATP

Indirect ATP
Acetyl CoA 2 x 12 =24 ATP
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Pyruvate dehydrogenase complex ‘
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‘Pyruvate dehydrogenase complex
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Structure of FMN, Fe-S and Coenzyme Q
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' 1l
He=
N [ 1
H;CO CH,
H;CO R
OH

FMNH, (reduced or hydroquinone form) Coenzyme QH, or Ubiguinol
(reduced or hydroguinone form)
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Protein Complexes of the Mitochondrial Electron-Transport Chain

Mass Prosthetic
Complex (kD) Subunits Group Binding Site for:
FMN NADH (matrix side)
- >
NADH-UQ reductase 850 30 Feg UQ (lpid core)
. , FAD Succinate (matrix side)
Succinate-UQ reductase 140 4 Fe.S UQ (lipid core)
Heme by
Heme by d
UQ-Cyt ¢ reductase 248 11 Cyt ¢ (intermembrane space side)
: Heme ¢; :
Fe-S
Cytcj
Cytochr 13 1H :
ytochrome ¢ eme ¢ Cyta
Heme a
, Heme a3 ,
Cytochrome ¢ oxidase 162 =10 Cua Cyt ¢ (intetmembrane P2 side)
Cup

Adapted from: Hatefi, ¥, 1983. The mitochondnal electron transport chain and omdative phosphorylation system. Annual Review of
Biochemisiry 54:1013-1069; and DePierre, I, and Emster, L., 1977 Enzyme topology of intracellular membranes. Annual Review of
Biochemisiry 46:201-262.
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Ubiquinone Cytochrome ¢
NADH-Q Cytochrome
reductase reductase

AR+ NAD*  Cytochrome
oxidase

Copyrigiht from http://www.angelfire.com/ak2/chemists/leah9.html
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Inhibition of NADH dehydrogenase

Reduced
NADH ‘Y FMN Fe-S Q
NAD «”\s FMNH Oxidized Fe-SX QH,

FAD
y FADH,

NADH dehydrogenase



Inhibition of Cytochrome reductase

“.CAZ/‘\
O— (‘- CH’—CH(('Hﬂg

NH—CHO
(CHy)g— CH;

Anu-ych A

tb(+2

Fe-S ("'2) Cyt c
1 (+3) t
Cyt b (+3)X X ch c (+2)

Fe ~S (+3) Cyt ¢ (+2) Cyt ¢ (+3)

Cytochrome reductase




Inhibition of Cytochrome reductase

CO N, To=N
<: azide Cyanide
Cyt ¢ (4) (Yt a (43) oyt 83 (+2)

Cytochrome oxidase —



1. MSsdIgMmoad 1 Snasoauan NADH 1UIHHU Fe—-S 1u NADH—-Q *
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J#an AG°, = —10 HMounaaT/ sua

3.msdignead 1§NAMsouIIn Cyt a 1MWV O5 1u Cyt

e

87 AG = —24 Hiaunasd/Sua

7

NADH + 1/2 Oy + H¥ ——> H,0 + NAD* A G = -52.6 Aiaunaed/iua

ADP + Pi + H* ———> ATP + Hy0 A G° = +7.3 faumaed/ua

anudeidanisadie ATP Fu 3 1uuaoadasd01ntaoasoq NADH fignoens-
1ndwSosdonileormouvosoondisu n1sad1e ATP 30 ADP uar Pi a1 Aagaauiiunis

drunend i Ssnasouluis niswiulrati Tunida Oxidative phosphorylation

NADH + HY + 1/2 O5 + 3ADP + 3Pi > NAD* + 3ATP + H,O
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|
I »ATP 6 ATP

G|UCOS€+ 38Pi + 38ADP + 60> > 6CO, + 38ATP + 44H50

Glucoser 2pi + 2app + 2nAD*
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H Wang and G Oster (1958) Nature 356 279-282



Coverslip coated with Ni-NTA
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1. Malate-aspartate shuttle
2. Glycerol phosphate shuttle




Oxidation fiedmewen Mitocondria

-untlyvn NADH dehydrogenase sumwiz H 9 matrix

19 A
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9
H* 210 cytoplasm deserdeismaimanil

1. Malate-aspartate shuttle

2. Glycerol phosphate shuttle
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M_alate-aspartate shuttle

S rEgTaTialcu e CyLosol (o), completing the
vele.

Intermembrane OH Malate- Matrix
space u-kotoglutaratc
00C — CHy—C — CO0 o~ trangporter OH
H OO0 —CH,— € COO
\{ +
NAD* NAD
Malate Malate
malnts -
NADH % Lehvdrogenase NADH
0 g -
OO ’*CH2* o000
Oxaloac HyN HN Oxaloacetate ?
00C—CHa— - COC
O0C - CHz— CHy—C — COO 00C  CHz—CHy— € COO e CHy— A OO
‘ H
Glutamate Glutamate

15 P FLaty

AMINOLYansiersse

nspasrtaty

it ransferns

a-Ketoglutarate a-Ketoglutarate
Q Q
00C—CH;— CHy - C—CO00O

OOC— CHy — CHy— C— COO

H,N Aspartate

Aspartate HyN
00C—CH; € C00

00C  CHy— C—COO
H
Glutamate—-aspartate

transporter Copyright from http://www.bioinfo.org.cn/

book/biochemistry/chapt18/sim5.htm



2. Glycerol phosphate shuttle

MADH + H” MNAD

CH,OH SR

,D=.|:“f HO C—H
CHLOPO5<~ CHLOPO5*
Dihydroxyacetone Glycerol
phosphate J-phosphate

MNitochondrea
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delwdropenase

Cytosol
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Inhibition of oxidative phoshorylation

_ 2, 4 dinitrophenol
Couple reaction Diumarol
Salicylanilide
Carbonyl cyanide phenylhydrazone

Valinomycin

lon carrier L2
Gramicidin

Oligomycin

ATP synthesis Rutamycin
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Pentose phosphate pathway
Targets of this pathway

1. To generate reducing equivalents

[ NADPH ]

2. To produce materials for nucleic acid

Riburose-5-phosphate [R5P]

3. To rearrange C skeletons of dietary carbohydrate into
glycolytic/gluconeogenic intermediate




Overview
Glucose

l

G6P

F6P l \G"P

Glycolysis Glycogen

@toss phosph@




Overview

Oxidative phase
NADPH NADPH CO,
6-PG 6-PG _j 2 Ri -5- hate
G6P __L lactone —> » Ribulose-5-phospha
A A
Nonoxidative phase
\J
, Nucleotide
_C ] Ribose-5-phosphate synthesis
3
\/ Cs T
FEP < > | Os| <« -
Ce
C
Intermediates




Oxidative Stage of Pentose Phosphate Pathway
Glucose-6-phosphate

NADP’
Glucose-6-phosphate
dehydrogenase
NADPH
L

6-Phosphogluconolactone

H.O
D Gluconolactonase
Hf
Y
6-Phosphogluconate
NADP’
6-phosphogluconate
NADPH dehydrogenase
Cco

2 !
Ribulose-5-phosphate

copyright 1996 M W King

Non-oxidative reactions



Pentose Phosphate Pathway

[ b Hexose monophophate shugtet:.) 0,
Co0

CHOB oy CHOB BO O H NADPH
*: } - HO—C—H (=)
0
GEP

y OF: ﬁﬁﬁ Glrnafictuie H—C—0H  §-Pelume H-C—0H

OH R Y

| |
f-P-gluconalictone CH, OF; CH,0P;
b-F-gluconat: RuS-P




Non-Oxidative Stage of Pentose Phosphate Pathway

- copyright 1996 M VWKing
Ribulose-5phosphate

Ribulose.5.phosphate

2 Ribulose-5.phosphate
3-epimerase

isomerase

Xylulose-5-phosphate Ribose-5-phosphate

Transketolase

Y y
Sedoheptulose-7-phosphate Glyceraldehyde-3-phosphate

Transaldolase

Erythrose Copyright from
4-Phosphate http://themedicalbio

I chemistrypage.org/
pentose-phosphate

-pathway.html|

Transketolase
Y
Glyceraldehyde Fructose Fructose

3-phosphate 6phosphate 6-phosphate



Pentose Phosphate Pathway

( & Hexoze monophophate shunt etz

G-6-F
\ IHEEI
Fhaspdadapas
PRI
CHEOH CHEOH HO— C—H
50 =0 1 e
CH,OR H—?—OH H—C—0H
H5F H _? _OH H—Cll—OH
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CHyOPS A, mopsaifaiee F-El-EP
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Y
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|
H—-C—H 0 g H 0
| th Y
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Glucose

l

Glucose-6-Phosphate
l Ghicose-6-Phosphate Dehydrogens e

6-Phosphogluconate
i (rultiple wactions)
Ribulose-5-Phosphate

Rab clarase
| Ribose I == Ribose-5-Phosphate = | PRPP I

Copyright from
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Adenosine ————— AMP —» ADP—»| ATP |

£ & Adenine
Phosphoribotransferase

B o S
| PRPP|

Adenme

Copyright from http://www.mrphysicalfitness.com/images/ribose-4.jpg




Roles for NADPH

1. Biosynthetic pathways

FA synthesis (liver, adipose,mammary)

Cholesterol synthesis (liver)

Steroid hormone synthesis
(adrenal, ovaries, testes)
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Roles for NADPH

lanosterol monooxygenase uxu:latmns

NADPH + 0, — NADP™ + H,0

% 1 - %X%

CH,0H CHO

Hi
SUCCeSSIVe demethflaunns HED
> —14 methyl
— 4 methyl
“"—} 40 methyl
W@w
.ﬁﬂ 24_cpolestadienol cholesterol

Copyright from http://www.chembio.uoguelph.ca/educmat/chm452/lecturl?7.htm



Lholesteral

s Roles for NADPH

(3p-HSD)
Pregnenolone » Progesterone
(P-430_,,) (P-430_;4)
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Roles for NADPH

1. Biosynthetic pathways
FA synthesis (liver, adipose, mammary)
Cholesterol synthesis (liver)
Steroid hormone synthesis (adrenal, ovaries, testes)

2. Detoxification
(Cytochrome P-450 System) — liver



Roles for NADPH

Polymorphisms
Drug Induction :
g l Regulation

X i
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7
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Copyright from http://people.bu.edu/djw/images/D%20Waxman%20Slidel.jpg



Roles for NADPH

1. Biosynthetic pathways
FA synthesis (liver, adipose, mammary)
Cholesterol synthesis (liver)
Steroid hormone synthesis (adrenal, ovaries, testes)

2. Detoxification (Cytochrome P-450 System) — liver

3. Reduced glutathione as
an antioxidant (RBC)
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Roles for NADPH

1. Biosynthetic pathways
FA synthesis (liver, adipose, mammary)
Cholesterol synthesis (liver)
Steroid hormone synthesis (adrenal, ovaries, testes)

2. Detoxification (Cytochrome P-450 System) — liver
3. Reduced glutathione as an antioxidant (RBC)

4. Generation of superoxide
(neutrophils)



Roles for NADPH

Step 1.Production of superoxide
Hb-Fe2*-0,  ------- >  Hb-Fe3* + O,
Spontaneous rxn, 1% per hour

Step 2. 02- + 2H20 """"" > 2H202

Both O, & H,O, can produce reactive free radical
species, damage cell membranes, and cause hemolysis



Roles for NADPH

Copyright from http://pmj.bmj.com/content/77/907/329/F2.large.jpg

©

Catalase

Hexose monophosphate shunt

P

2NADPH 2NADP™

—

2PQ%* or 2DQ%* 2PQ*° or 2DQ*

==

20,

&,

20,"

Superoxide
+2H"

dismutase
+2e

H,O —=

peroxidase
GSSG Glutathione GSH
reductase
NADPH NADP™

e

Hexose monophosphate shunt

= OH"+ OH + Fe®*

| &

Lipid peroxidation

l

Cell death

H,O, + Fe®*



ATP

ADP

Glucose
(Glucose-6-
NADP* Pho
2H,0, GSH {Nicotinamide -
(Hydrogen  {Reduced Adenine Di- HENS
Peroxide) Glutathione) sphate) !‘ z < é
HIRK
wls "=
g - & B
T3 £
e =
P e e 6'
* NADP 6-P-G
0, (Oxldlzed (ké&liced (6 Phospho-
Glutath ione) Nicotinam ide glnconate)
Adenine Di-
Phosphate) v
Glyceraldehyde-3-P
+ CQub [J° +
* NADPH's

‘000.

W Phosphoglucoisomerase
> G-6-P > F-6-P

70% Embden-

{Fructose-6-

ate) Meyerhof Pathway  phosphate)

e

Pyruvic Acid
+2ATP + 2H*

Copyright from
http://www.suriyothai.ac.th/files/u60/img003.jpg



Roles for G6PD
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G6PD Deficiency

Recessive sex-linked mutation
X-chromosome
Rare in females (two X-chromosomes)

A B C D E
Father  Mother Father Mother Father Mother Father Mother Father  Mother
healthy  carrier deficient '|E.E|[|"|- deficient  carmer  hea [h'r deficient  deficent  deficient

L T AT (&)R (L)) (&)Y [RJ{R)

WW WW /N

o) o (x)y oy (e oy (x)(x) (x yoxy x(x)  (y  (x)(x)  (x)y
5% K% 2% 1% S0%  S0% 19N 15-.-5. 15.-.-5. 5% % W% 50% 0%

X Mormal Chromosome  (X) Mutznt Chromosome

Inheritance of G-6-PD Deficiency
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G6PD Deficiency

Type 1. Homozygous mutation:
high hemolysis and anemia

Type 2. Heterozygous mutation:
Normally asymptomatic

Other chemicals known to increase oxidant stress
Sulfonamides (antibiotic)
Asprin and NSAIDs
Quinadine and quinine
Napthlane (mothballs)
Fava beans (vicine & isouramil)



Regulation of PPP
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clucose luconeogenesis
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Pij Glucose-6-phosphatase From Pyruvate

glucose + 2 NAD* + 4 ADP + 2 GDP + 6 P;

http://rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/gl



From Lactate The Cori Cycle

Glucose

2 ATP'-/

L
2 Pyruvate

Gluclzose

K6 ATP

2 Pyruvate

|

2 Lactate ==

2 Lactate
Blood

Liver Muscle



| Alanine From

e glucogenic amino acid

Sarine .
Threonine Leucine
- Lyzinea
Glucase _
202 £l = Isaleucine Fhenylalanina
Leucina Tryptophan
Trypophan Tyrosina
- Fyruvate
Phaosphoanol- Y
pyruvata ¥
Acelyl Cah - sAcetoacaelyl Cod
Asparagine . : &
Aspariate * Dxakacelala
Azpariale _
Phenylalanine » Fumarate Litrate
Tyrosine
nine
Argini
lzoleucine Succinyl re-Kalo- E:L:'::-Em:ﬁl:ﬂ
Methioning  ~_» CoA glutarate R
Threonine Copyright from Proli
Valine http://img.sparknotes.com/figures/9/94eebfc3ef3ec roline
1b04fe8b91e5bfalflf/figl0.gif




Glucogen synthesis
Pathway

{



L8]

St Glycogen

‘Im Phosphoglucomutase :
u,av Glycogen synthase

Pyruvate

V.. 1
* _."Acetyl CoA

Cholesterol

Kerb cycle

Fatty acid 4 __5

CO,+H,0 ATE

DMV ABNVBIIMAIUAY

amino acid, Glycerol
Lactate

Propionate ,Glycogenic

Glucose
lwaoa

N Qs
TP """ 1 pathways =

NADP, Pentose phosphate |




Step 1. Reaction of phosphoglucomutase

6
CH20P03® CH,0H
Phosphogluco-

H . H mutags,e
H 3
OH H .
HO OH
H OH H OH

a-D-Glucose 6-phosphate a-D-Glucose 1-phosphate

Principles of Biochemistry, 4/e
© 2006 Pearson Prentice Hall, Inc.,



a-D-Glucose 1-phosphate

cHaon Step 2.

H O H
H o

N b oo Reaction of

T N ™ e (dlycogen synthass

eo—P—o—P—o—s;—o—cm2

(l)@ é@ o
H HH
OoH OH
H,O
/ UDP-glucose
2P; = PP, pyrophosphorylase
Pyrophosphatase
CH_,OH
H O H
H O o
OH H il I
HO O—P—O—P—O—CH,
o e +
H OH o (o)

H OH

UDP-glucose

Principles of Biochemistry, 4/e Glycogen (n residues)
© 2006 Peasrson Prentice Hall In<.

l Glycogen synthase

CHLOH CH,L,OH
o o H S T H T
o 1] Il H H
o—r;—o—l;—o—u:idane “+ pha H = oH - =
o o HO
H OH OH
upDP Glycogen (n + 1 residues)

Pvinstigldes of Bia<havwwintry e
O 2008 Pearvon Premtice Mall, e
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Regulation of glycogen synthesis

Glycogen
synthesis
Glycogen .
synthasea_ 7~ AN\
ATP ADP
Epinephrine cAMP

. (Phosphorylase
kinase

: ATP ADP q
ogen : VA Glycogen
phorylase b phosphorylase a

!

Glycogen
degradation

Principles of Biochemistry, 4/e
© 2006 Pearson Prentice Hall, Inc.



PHOTOSYNTHESIS

{



PHOTOSYNTHESIS

Autotrophs, as are some bacteria and protists

— To produce own organic matter through photosynthesis

Energy tranformation from sunlight energy to stored energy in
the form of chemical bonds

£

/4

(d) Cyanobacteria

(a) Mosses, ferns, and
flowering plants



Photosynthesis

Carbon dioxide (CO,) requiring process
that uses light energy (photons) and
water (H,O) to produce organic
macromolecules (glucose).

CARBON DIOXIDE

WATER
B OXYGEN

6 CO, + 6 H,0 + light energy — C;H,,0, + 6 O,



leaves: Pla
a. stoma - pores

b. mesophyll cells

Mesophyll
Cell =—"

@ Chloroplast
W
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Chloroplasts

T ue .”1'(’".:},‘{‘, o~ ¥R"

: 0. (\. o . .90 “ .-7.“?‘
| 'gfofzé,»*:zf °°° 2 Plant Cells
e AR : ! ° ’°§’ s
B M oo o = | have Green
C N\ R ,o" go : % 45‘“
gL gg% Chloroplasts
| o P00

Stroma
—

The thylakoid Thylakoid

membrane of the Graniki
c (stack of
| chloroplast is thylakoids)

.+ impregnated with nermembrans
»  photosynthetic
J‘:,_~ ,_‘ plgmentS (i.e., Imngrerlrbrane

chlorophylls, o
carotenoids).




Cthl"OPlGS"’ Stroma

Outer Membrane Thylakoid

Granum

Inner Membrane

Thylakoid Space

Granug hylakoid Membrane
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Thylakoid membrane
has chlorophyll Molecules:

Mg* in the center

Energy absorbtion in certain wavelengths
(blue-420 nm and red-660 nm)

N

Plants are green because the green
wavelength is reflected.
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L
g > Hydrocarbon tail
(H atoms not shown)
-



Chlorephyll @ & b

Chlorophyll a >
%Hz /
6
S o
AR
HC— %{:—ria r~||— E—CH,—CH,
s S
H—=C ! L
HC, JE—N “N—C{ >
A :lg :lz s
H \ L T i ¥
C. i
A
N
CH:  co,cH, ©
.
0 CH, CH,
Phytol | | |
CH,—CH=C—CH,—{CH,—CH,—CH—CH,};H

f Phytol tall




LINVAVAVAVAVAVA VAN

Increosing wovelength >
0.00?1 nm 0.01 nm 10 nm IOO?m 0.01| om l::n l.m l(xzm
Gammo rays Yraye 3!:; In‘rared Rodio woves
Radar TV P AM
Visble light
400 nm 500 nm &0 am 700 nm

AN 2-3 AduuE A uF ARy 1A

(730 : Physic GCSE, Ontine, n.d)



Action spectrum of photosynthésis

e

g 8 8 § &
sEayuAsojoyd jo a1el anie|Ey

Chlorophyll t

100

[=]

uondiosgy

(b}

700

GO0

Wavelength {nm}




Plant colors

During the fall, the green chlorophyll
pigments are greatly reduced revealing
the other pigments

Carotenoids are pigments that are
either red, , or
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Redox Reaction

I— Reduction ﬁ

6CO, + 6H,0 — CgH,,0s + 60,

glucose

I_ Oxidation —1

6CO, + 6H,0 -» CgH,,0s + 60,

glucose

Carbon Oxygen
dioxide Water
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Two steps of photosynthesis

Step 1: The light | 0
reactions convert -
solar energy to

chemical energy
Produce ATP & NADPH

NADP*

ADP N

PN
Calvin
cycle

Step 2: The Calvin cycle 02
makes sugar from carbon
dioxide



Steps of “THE LTEHT REACTION”

Light hits reaction centers of
chlorophyll, found in chloroplasts

Chlorophyll vibrates and
water to break apart.

Oxygen Is released into air

Hydrogen remains in chloroplast attached to
NADPH



Light Reaction (Electron Flow)

Two possible routes for electron
flow:

A.  Cyclic Electron Flow

B. Noncyclic Electron Flow



Cyclic Electron Flow

Primary

Electron Electron Transport Chain

Acceptg O (ETC)
: ATP
e
Q produced
Photons by ETC

. — O
Accessory D
Pigments — O O o

Photosystem |

Pigments absorb light energy & excite e- of Chlorophyl|
a to produce only ATP 160



Cyclic Electron Flow

ATP

produced via proton
motive force — e

AN 2-17 UHUAMUEATzAUNE 3 L TumsaenaadidnaTaunuuiuinging

(1311 : Photosynthesiz, Online, n.d.b)

Pigments absorb light energy & excite e- of Chlorophyl|
a to produce only ATP 161



Noncyclic Photophosphorylation
» Generates O,, ATP and NADPH

PHOTOSYSTEM I

by chemiosmosis



The production of ATP by chemiosmosis in
photosynthesis

Thylakoid r
compartment
(high H*) Light

Thylakoid ,. | AN g0 000se0el [esoce

membrane

00000

Antenna
molecules + Ht

ADP +(P) AT

Stromc'i ELECTRON TRANSPORT
(low H*) CHAIN

PHOTOSYSTEM 11 PHOTOSYSTEM I ATP SYNTHASE




Steps of "Calvin cycle”

Chloroplast

Light H,0
Stroma

Stack of

thylakoids Carbon Fixation (C; Fixation)

W\ ATP and NADPH from
| light reaction
/ to make sugar (glucose).

Light Calvin

B reactions * cycle

(Sugar used for

e Cellular respiration

e Cellulose

e Starch

\. Other organic compounds




* 9N VAU

CALVIN
CycLE

PHASE 3:

- ) - . ‘P - :
REGENERATION OF ‘ Glyceraldehyde PHASE 2:
CO, ACCEPTOR . REDUCTION
(RUBP)

10D P T
G3P Glucose and
(a sugar) other organic

Ovioins compounds




OPO;™
—(00"
H—C—OH

CH,0P0;™
(=0

“zOPO;z’ ]
—H

-

H,0

0PO;*

CH0P0;

€0,
H—C—OH "

H—C—OH

3-Phosphoglycerate
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S1UaCIAUALNNIANY
&l&g_qlpuﬁ 3 SLuLuaLsYu (Regeneration)

rGA_T_T.uLaf;a'?'u 1 || Pear Tum r]a'ﬁ_' 2| | PeAaL Imaqaﬁ i|| AL Imaqa‘n"'n || AL ILlaqa'ﬂ 5
¥
1alzasaa® \
T —— azf Taudasis \
2= lauviaavia (DEAF) \
(DELAF) T Ina 4 ".I
| _ Waee FTadalan 'nl
e (E-41] 1,7 WomH#
ining 1.6 Wifl IME & - et
Womva |- wWomva T ! —
{F-1.6-F) (F-6-F) l: _
'I-jg las “.-r:." @5
wWa A 2P
(X-5-F) (3-5-F)
I
-
TsTus = TiTua s Tslusa s
wasHa HamHa waaivia
(F.-5-F1 (B-5-F)
A
ATF—— —
_:1' ATP =2l
AP ADP
3 Taana lTsulaa 1, 5 Davaan
(3 RuBP)
ATRT 2-26 U§AToTSiauiuais iy
(M3 - Tiftickjian, 7., Online, n.d.)
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4
. G-6-P
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Glucoze
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C3 Photosynthesis

s Upper

A _ _
P - A epidermis
Flemiiing .,:’_H,_.ﬂ..q? £ ] :
- r},é Palisade
= i mesophyll cell
il [V § 0,3 n{. o0 10 {E-’
0 % 0 o] {10’ i A .

Lol M Gl Pl i Yvein
@00 ol How oy 0l ol Bundle
A |V oldln o ‘}*-fo -

Yalg (N T sheath cell
~..~—'". 1._‘\.‘; ; 'P," ."}T..H:E_ ?

B (N () 5 Spongy
L SR Qe A mesophyll cell
.;,a ng;ﬁ. ;J & _

i oo oY e i
SO G . Lower
O /P \SOPS epidermis

& 1]
Al
Stoma

iy C3 dlunshiiieriunoduae
9

1 uazeins (Bundle sheath)
litinae Tswaraa

08191810 T12191 T3 99 vag
fwa o'l

= P A A
Msnsamsvueu laeon lya Nl lu
Y Y
suil leiaa (Mesophyll) mui
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wy C3

Copyright from http://119.46.166.126/resource_center11/Admin/acrobat/v_4_sc_bi_570.pdf



Low \twv‘«’mvt LuBP H\g\n kmpcrac\-we.
High €0,:0 rato 0-0-0-0-0 Low C09:0, vatio
Coalvinn c\,o\¢ Pko)rov'cs‘)'\rm\-\ovw

Copyright from https://www.khanacademy.org/science/biology/photosynthesis-in-
plants/photorespiration--c3-c4-cam-plants/a/c3-c4-cam-plants

172



Ploblem ot "Phote-respiration” rrom O,

Chloroplast Peroxisome Mitochondrion

H 2c:—c:n==c::32—
Coo
' > \

2-phosphoglycolate

> R”B'5°°< Photorespiration

HQC—OPO32‘

0=C C/ =
plnen H(|:—0H ! < <€

HC—OH H,C—OPO;*

Hgé—OPO;:,z' 3-phosphoglycerate

Ribulose-1,5-

bisphosphate

Copyright from

https://en.wikipedia.org/wiki/Photorespiration#/media/File:Photorespiration_allgemein.svg
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Chloroplast
Utilisation of oxygen and RUBP
RUBP used can be formed by - - - - -
photosynthesis only

AIINANIU

Function of photorespiration is to

recover some of the carbon _ . _ _

from the excess glycolate

O; used and CO; is produced -

Produces no sugar

molecules or no ATP

O, + RUBP > Phosphoglycolate -
PGA C ADF
,f ATP
Glycolate G'Yﬁﬂo'ﬁ
5 :
|
I
el : CNADH
| — NADH;
Ser
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To limit the amount of photorespiration

C4 Pathway™
CAM Pathway™*

* Both convert CO, into a 4 carbon
intermediate >

CAM plants take in carbon dioxide during the night through pores in their leaves. During the day,
the pores close and the stored carbon dioxide is used for photosynthesis



 In C4 plants
In C3 blant photosynthesis occurs in
- both the mesophyll and
the bundle sheath cells.

- 15% of plants (grasses, corn, sugarcane)

all processes occur
in the mesophyl| cells.

(@) Arrangement of cells in a ; leaf

- Almost plants

— Upper epidermis

rThese cells have rubisco
§—— and fix CO; to RuBP to

Mesophyll cells

\ T 5o form 3PG. y,
il g % - Vein
a:'fi : ,'n __(Thes.e cells have few
4 ™ chloroplasts and no rubisco;
Bund|e, LtheydanutﬁxCDz.

sheath : o )
, - = Spongy mesophyll cell
cells | T~ |
In CAM plantS Stoma ~ Lower epidermis

- 5% of plants nszueunys duilysa duilzsad asursiest nuarutiu ndae'ld

Image taken without permission from http://bcs.whfreeman.com/thelifewire|



- —-

bundle sheath cell mesophyll

(Copyright from https://sites.google.com/site/photo612017/bth-thi-13-kar-
sangkheraah-dwy-saeng/klki-krabwnkar-sangkheraahzadwy-saeng/phuch-c3-
c4-laea-cam)



C4 Photesynthesis

MESOPHYLL CELL

BUNDLE-SHFEATH CFELL

\

2AMP + PP,

Pyruvate phosphate
dikinase

2ATP + P;

Light reaction

Cy
Acid

\

/

Copyright from http://www.doctortee.com/dsu/tiftickjian/plant-phys/ps-variations.html

wnaig maz 1015 CO, anussmalasasavelilausuniuann O,

te
RuBP Calvin
cycle
C Sugars
Acid Search
Pykuvate :
ORF Calvin cycle
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Copyright from http://119.46.166.126/resource_center11/Admin/acrobat/v_4_sc_bi_570.pdf



wy C4

ANWULYDINY CAM

1. Stomata {aranarsuuasUalunmnmeiugansednanuivyyile
A
au
- & o

2. M3nse CO, atuluananspulagaaslsnaadla Malic acid

» » = I s & w =
3. Malic acid gniiuaglu Vacuole vunalvg@atuanyaiiiayvag
iy CAM
4. 050 Malic 3590 decarboxylation Tunamfillugsudsy CO, 8nung
AaalswaaAitndanans AadY uuuiy C3
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wy CAM

CAM Photosynthesis: Crassulacean Acid Metabolism

v}

Q

% 2 \‘i%i

S W
2 I ')‘ 5% %‘;ﬁ—
K osphoeno X B X
* Lo / low pH -:’%\ 0 higher pH |
R pyruvate X RR
R R BN

b F\vi gjg R
' HCO,- malic §§ R [
% acid Y B ya
5 S 2 malic N
Y M il Y B ™
5 ) — malate |-l 4 enzyme B 5
~ NAD* E« 2{ N
NADH > B 3

8 NADPH -

oxaloacetate malic Sl 3 3

i

%

S B malate
de hydrogeny\@ «Zi %‘ /

'Q/A\\r ', N(V
A _?;y,gx;v,wgm (m;*sw ’95}&‘,/, I "“9*;;39,3;3,5%49??} AN ?1; ﬁavv\;lsx&%;f
NRRRE A KJ\«&«WS’«\% RN

stomata closed!

Copyright from http://119.46.166.126/resource_center11/Admin/acrobat/v_4_sc_bi_570.pdf



Copyright from https://medium.com/plant-cell-extracts/yes-we-cam-e693af69dbc2
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31N \Wisumeuanyazu1atsznmsvesny Cs ity Cs uaziiy CAM

mzay (00)

Characteris| s Cs Ny Ca Wy CAM
tic (Cs (Cs (CAM
dnaeh Species) | Species) | Species)
nfseume
Taseadwvesly Tainwy Ny Tainy
Bundle Bundle Bundle
sheath cells | sheath cells | sheath cells
Walunanarwiu | @alunanaisiu | aamunnalaluna
1ty naAU
(Stomata) uaztlalunan
AR
sasimsmens | 350 - 1000 150 - 300 50 to 100
FIQUNY] 15-25 25 -35 25 -35

Copyright from CSS 330 World Food Crops, Online, n.d.
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o Y
TUATICUALLEAN

(Entire leaf)

a
BN

Characteristic iy C3 i C4 s CAM
snvaziinfieuion | (C3 Species) (C4 Species) (CAM Species)
HANAALSN 3-Phosphoglyceric | Oxaloacetic acid Oxaloacetic acid (OAA)
nnmsase CO2 acid (OAA) wlaewilu Malic acid)
PGA) alaeu il Malic
wie Aspartic acid)
Wnuiihanszuim ms Hlailad Ulalad navisadiivma Hlailad

(Entire leaf)

MINDUAUDIADUE **

] T
o A

auAIN

12 wesanuduuas

1 lidusan

ANUTUIAIGIA

auAIN
14 vyoswnnuaundigage

gega
Photorespiration i Taif] il
uaz CO2 50 ppm 10 ppm wn5ervesnn 50 ppm sasiifiuets
Compensation
point
Sasimsdunsizialonas 6-40 14 -64 15-6
(luTasTuamsranas/
M)
das M yanIa (N5 34 -39 50 -54 ~15-20
)
mas A Tamas ~40 60 -80 >40
(@umanani/il)
mslsuddoann wARLRUIAT  1vASEU wasou wadouurads wduvaesamesisiiou
QieIMmet

Copyright from CSS 330 World Food Crops, Online, n.d.
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Chemiosmosis Energy Coupling

MITOCHONDRION

Examples

CHLOROPLAST

INTERMEMBRANE
SPACE

MEMBRANE
[YRA

synthase

ADP +®; &
Low H* R

concentration

MATRIX
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Differences between cellular
respiration and photesynthesis.

Cellular Respiration |
O, finally accepts electron to

& W produce H,0.

Protein
complex

of electron
carriers

LD

#gar:‘r}lg;gd ;alectrons Photosystem Il C\ét&cni;rlg;ne Photosystem | 1
il NADP*

= reductase \ADP 5
- 14 ' ?. "D y o1 ol "; -',‘ T - \I,__-_“-‘.
H,O brings electrons to the sl (( {0 ( :>

ETC and becomes O,

Calvin
cycle
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